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The Hamiltonian usually analyzed in investigating pa r t i c l e  motion in  a quantum 

f i e l d  is: 

i n  which H 

f i e l d  energy, 

I n  order 

P 

H = H + Hv + Hint 
P 

corresponds t o  the  par t ic le  i n t r i n s i c  energy, Hv t o  the quantum 

t o  the energy of par t ic le-f ie ld  interaction. Hin t  
t o  deal with a discrete spectrum, the whole system is  considered i n  

a cer ta in  f i n i t e  space of volume V , f o r  example, i n  a cube with side L = fl , 
and nonperiodic boundary conditions are imposed. Here, it is  understood t h a t  the 

passage t o  the l i m i t  as V-+ OD , corresponding t o  the t rans i t ion  to  a continuous 

spectrum, i s  a l w a y s  kept in mind. 

If the analyzed quantum f i e l d  can be expanded in to  noninteracting osc i l la tors ,  

then : 

Hv = 7 1 C haf(bfgf + 6fbf) 

( f )  

i s  the osc i l la tor  frequency; bf, 8, are the quantum amplitudes with 
"f where 

known commutation relat ions corresponding t o  Bose s t a t i s t i c s .  The f generate 
-c 

a d iscre te  spectrum fo r  f i n i t e  

V 3 OD . Thus, f o r  example, f , i n  many problems, i s  the quasi-wave vector 

V which transforms i n t o  a continuous one as 
+ 

are posit ive and 2n with the  components 

negative integers.  

For nonre la t iv i s t ic  par t ic les  without an external f i e l d  : 



. 
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The same expression can be used when an external  f i e l d  ex is t s ,  if only the method 

of equivalent mass is  used. 

A typical  form of the interaction energy is  the expression of the three-dimen- 

sional,  homogeneous f i e l d  l i nea r ly  dependent on the quantized functions, f o r  example : 
0 + 

Expanding $(?) i n  plane waves normalized i n  the volume V : 

1 0 

in which t h e  af, af are proportional t o  - . 
Jii 

and, In  t h i s  paper, we used the cited typical  expressions f o r  Hp, Hv, Hint 

therefore,  we assume that: 

*+  bf 3 -2 + + *-, 36 
H = E + 1 C hwf(bfbf + bfbf) + ,Z @ei(fr)b + 3 f e-i(fr) f 

2y 2(f)  ( f )  

Hamiltonians of t h i s  form are considered i n  various problems. 

Let us  r eca l l  the problems of impurity-partide motion i n  helium I1 [1,2,3]; 

electron motion i n  a semiconductor [b ] ,  nucleon interact ion w i t h  a sca la r  meson 

f i e l d  i n  the nonre la t iv i s t ic  approximation. 

Somewhat more complex Hamiltonians, but of substant ia l ly  the same form, are  

analyzed a l so  i n  nonre la t iv i s t ic  theories of e lectron interact ion w i t h  an electro- 

magnetic f i e l d ,  of nucleon interaction with pseudoscalar and vector meson f i e lds ,  

e t c .  

Let us note t h a t  although the analyzed Hamiltonian (1) is  one of the simplest 
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in the problems of pa r t i c l e  interaction with a quantum f i e ld ,  the exact solution 

of the appropriate wave equation i s  impossible i n  every case i n  the modern state 

of the science. 

Consequently, approximate methods of perturbation theory must be drawn upon. 

The known, ordinary schemes of t h i s  theory are used d i rec t ly  in analyzing the 

case of weak coupling of par t ic les  with a f i e l d  when the principal terms in the  

Hamtltonianare H and Hv and Hint i s  a s m a l l  perturbation. 
P 

However, i n  a number of problems the par t ic le-f ie ld  coupling cannot be con- 

sidered weak. 

For example, l e t  us indicate the case of strong coupling when Hint i s  pro- 

portional not t o  a s m a l l  but t o  a large parameter and also the, mathematically- 

similar, case of 'adiabatic coupling' when the f i e l d  'k inet ic  energy' i s  s m a l l .  

Let us take a spec i f ic  example and l e t  us  analyze j u s t  the motion of an 

electron i n  an ionic crystal using the model proposed by S. I. Pekar [4]. 
In  t h i s  model the existence of the periodic f i e l d  of the ion ic  lat t ice is  

taken in to  account by the effective mass method and, consequently, it i s  considered 

tha t  

The electron interaction with the l a t t i c e  i s  considered a s  specified by i ts  inter-  

action with the polarizing (optical)  waves corresponding t o  i n e r t i a l  polarization. 

Here, the ion ic  l a t t i c e  i t s e l f  is replaced by a d ie l ec t r i c  continuum. 

Starting from these representations, Hint i s  taken as: 

* *  
where P(r) i s  a vector corresponding t o  the i n e r t i a l  par t  of the spec i f ic  polar- 

ization. 
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Since Hint i s  not zero o n l y  for  longitudinal waves, the transverse waves 

can be eliminated from the considerations completely and the f i e l d  of longitudinal 

waves can be taken as the quantum f i e ld  with which the electron interacts .  
-+ 

Then, expanding P(r", i n  plane waves normalized over the volume V , we can 

write : 

and Pf 

the f i e ld .  

can be considered as the generalized complex coordinates characterizing 

Using t h i s  expansion, we obtain: 

Finally, the f i e l d  energy in  the Pekar theory is: 

where o are  the  frequencies of the ion opt ical  osci l la t ions;  cf are  cer ta in  

constants. 
f 

Therefore, the complete Hamiltonian describing the motion of the electron i n  

the ionic  crystal in the model considered is  represented by the expression: 

Jn a number of cases, the ion osci l la t ion frequencies are  suf f ic ien t ly  small. 

Then, the first three terms in  the expression f o r  H w i l l  be prinaipal and the 

fourth, corresponding t o  the kinetic energy of the longitudinal, polarizing ion 

osci l la t ions,  w i l l  be small and we obtain, here, a typical  example of the coupling 

we called adiabatic. 

Using the introduction of the quantum Bose-amplitudes 
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the Hamiltonian ( 2 )  leads t o  t h e  general form (1) cited ear l ie r ,  with the coeffic- 

i en t  s : 
2nhof cf 

$--K{T 
In order t o  formulate, mathematically, the assumption on the smallness of the 

frequencg, we can consider proportional t o  some s m a l l  parameter e . Then 

cof 

2 % i s  said t o  be proportional t o  e and haf t o  be proportional t o  L . Con- 
sequently, w e  can speak of adiabatic 

described by the Hamiltonian (1) , if 

(3 )  %f = EBf ; 

coupling i n  the general case of the system 

we put: 

2 haf = 6 vf 

The adiabatic character of the coupling, determined by the HanUtonian (1) with 

the coefficients ( 3 ) ,  becomes especially exp l i c i t  i f  we transform from the Bose- 

amplitudes t o  the complex coordinates: + 

and the canonical conjugate momenta: 
+ 

Actually, then the H W t o n i a n  (1) with the coefficients (3 )  can be writ ten as: 
9 

4 Bf +%f 
w 

e -*2 
i(fr) + 1 Z v q q + - Z vfp-fpf ; H = + Z Afqfe Af = 

( f )  fi 2 ( f )  f -f f 
*IJ (f) 

(6) 

i n  which the f i e l d  k ine t ic  energy enters as a s m a l l  parameter. 

L e t  us note tha t  a number o f  problems in which the k ine t ic  energy could 

be considered as a s m a l l  perturbation w a s  already investigated using perturbation 

theory ., 
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For example, l e t  us c i t e  the problem of the influence of the nucleus motion 

on the energy l eve l  of the electrons i n  the molecule [a. 
of t ranslat ional  degeneration is  characterist ic f o r  a l l  these solved problems. 

However, the absence 

I n  our case of the problem of par t ic le  interact ion with a f i e l d  there i s  a l w a y s  

t ranslat ional  degeneration inasmuch as the Hamiltonian (1) is  invariant with respect 

t o  the group of transformations: 

( 7 )  

or,  in complex coordinates: 

-+ -. r -+? + 2 ; a = const 

J. I 

9 * +  r * r + a  ; 

Because of the degeneration, the known 

inapplicable here and it would be necessary 

methods of adiabatic approximation are 

t o  construct a new special  form of 

perturbation theory. 

The explanation of t h i s  new scheme, developed by the author and S. V. Tiablikov, 

i s  the  subject of t h i s  paper. 

L e t  us make a number of preliminarg remarks. Thus, because of the Hamiltonian 

invariance with respect t o  the group of transformations ( 7 ) ,  the  t o t a l  momentum of 

the  system 

* * +  .) 

p + Z h f bfbf = P = const 

Using the variables (4) , ( 5 )  , the t o t a l  momentum can also be 
( f >  

i s  maintained. 

represented as: 

( 9 )  P = p  - i h  I: f qfpf 
( f )  

-* 
S h c e  P c o m t e s  with H , we can use t h i s  vector t o  enumerate the energy levels .  

comrrmtating with H 
* 

Let us take any independent system of observations 

which generates a complete systemwith 
+ 
P and l e t  us denote the energy levels  and 
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the corresponding eigenfunctions through: 

... u .... 
J 

E = E+ 
P, ... (Ij... 

Now, l e t  us show t h a t  the derivative 

9,. . .u:. . . 

is  the average pa r t i c l e  velocity for the 

perf o m  the canonical transformation 

s t a t e .  Actually, l e t  us %,. .Aj.. . 

in the Hamiltonian (1) . Then 

and 
-? * * +  
r = l ( P  - h Z f ZfCf) 

in which, here, the components of P can be considered as c -numbers. 

( f 1 c1 

+ 

Let us write the wave equation: 

and l e t  us different ia te  

or 

( H  - 

from which 

( H  - E? tF = o  
‘‘3 y***aj*** + 

it with respect t o  P . We obtain: 
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I 

t h a t  is  1 

which proves the correctness of the assumption made. 

Now, turning t o  the formulation of the new adiabatic approximation scheme 

which is  applicable t o  the Hamiltonian of type ( 6 ) ,  l e t  us  note t h a t  it w i l l  be 

more expedient t o  make certain variable transformations i n  order t o  give the wave 

equation a more convenient form. In order t o  explain t h e i r  physical meaning, l e t  

us visualize how the par t ic le  must move f o r  a state close t o  the lowest energy 

l eve l ,  Evidently, a fluctuating motion - 'tremor' - specified by its interact ion 

with the zero-point osci l la t ions of the f i e l d  must be imposed on the uniform and 

r ec t i l i nea r  par t ic le  motion. 

be the par t  of ? which r e fe r s  t o  the uniform, r ec t i l i nea r  motion Let 

and l e t  ff be the fluctuating part. 

Keeping in mind the group of transformations (8),  it appears natural  t o  us t o  

make the change of variable such t h a t  all the var ia t ion transforms t o  

reducing (8) t o  the pure translation without touching upon ? and the new 

f i e l d  coordinates. 

d , here, 

Consequently, we should put: ** 

and should consider (8) as the transformation 
? + i f + .  + 

f o r  which and Gf remain invariant. On the o ther  hand, i f  the parameter c 

should equal zero exactly, tha t  is, if the f i e l d  k ine t i c  energy could be neglected 

completely, the variables Gf would commute with the t o t a l  energy and the energy 

l e v e l  could be considered a function of Gf : 

E = E( ... Gf...) 
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The 

cisely those, for which: 

Gf would have specif ic  numerical values f o r  the lowest energy level and, pre- 

E(...G~...) = min 

Because E is  small, but not zero, in the case analyzed, we put: * * 
Gf = Uf + &Qf j u-f = uf ; Q-f = Qf 

where uf are certain numbers which w i l l  be determined l a t e r  and the Qf are new 

variables. Therefore, we arrive a t  the change of variable: 

These transformations introduce instead of the variables g, .. .qf.. . the variables 

;,%,. ..Qf.. . which are three larger in number than before and, consequently, we 

must impose three independent, additional conditions, f o r  example, on Qf . 
Let us take any complex numbers v sat isfying the ' substant ia l i ty  re la t ions '  f 

+e 
v-f = vf 

and l e t  us impose the three additional conditions 

(11) C P  ?fQf = 0 
( f )  

on Qf. 

vf 

In order t o  simplify the calculations, it w i l l  be convenient t o  choose 

so t h a t  the orthogonality relation 

C f = f P* VfUf = 6 
( f > =,P 

-* 
where fa,fP are components of the vector f , would be sa t i s f ied .  

S t r i c t l y  speaking, these last relat ions do not limit the freedom of choice 

of vf inasmuch as we can succeed i n  sat isfying (12)  f o r  arbitrary vf 

appropriate l i nea r  transformation in the f space. 

by an 
4 

Counting the additional conditions (11) , we have j u s t  as many independent 

variables among the new &?,. .Qf.. . as before. 
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Now, l e t  us consider t he  wave equation 

(H - E)$ = 0 

i n  which 

a a  4 
Z v  -- z v q  q - -  6 i ( f r )  1 2 

H = - -  A + Z Afqfe 
( f )  aq_f aqf 

f -f f (13)  2k ( f )  

and l e t  us transform it t o  the new variables by s t a r t i n g  from the usual derivative 

transformation formulas: 

F i r s t  of a l l ,  l e t  us note t h a t  the r e l a t ion  

resul t ing from 

Remarking 

-+ 
(lo), (11) shows that  8 i s  a function of qf independent of r . 
also t h a t  

we f ind  from (14) 

(16) 

where 

In order t o  c lear  expression (16) w e  must f ind  2 . 
aqk 

Hence, l e t  us d i f f e ren t i a t e  

(15). We w i l l  have: 



or  

11 a 

Hence, because of the orthogonality r e l a t ion  (12)  : 

Expanding the desired function i n  a s e r i e s  of powers of the small parameter, we 

obtain: 

Substi tuting these ser ies  in (16) and then, together wi th  (10) i n  (13), we f ind  

an exp l i c i t  expression f o r  the operator H i n  the new variables represented by ’ 

an expansion in powers of e . 
not contained expl ic i t ly  in the transformed operator 

of the invariance of H with respect t o  t h e  t ranslat ion 

It is easy t o  confirm tha t  the variable i s  

H , as  it should be because 

q +; + h . 
* 

The variable q a r i s e s  i n  H only through the canonical momentum conjugate 

t o  it. 

Let us explain the physical meaning of t h i s  quantity. 

Because of (10) we have 

and, consequently, 
+ a i ,  - ih-+= p - i Z h f qfpf 

aq ( f )  

Therefore, we see on the basis of ( 9 )  t h a t  the quantity considered i s  the t o t a l  

momentum of the system: 

Inasmuch as q does not enter expl ic i t ly  fn the transformed operator H , we can 
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eliminate t h i s  variable by putting 

P 
Then, we obtain the wave equation for F i n  which P w i l l  enter as the usual 

c -vector. 
3 

It is  convenient t o  introduce instead of P the vector: 
2-, 9 

I = t P  
+ 
P t o  be a As simple computations show, t h e  fact  i s  tha t  i f  we should consider 

'zero order' quantity, then the dependence of the t o t a l  energy on P would on ly  
a 

appear s t a r t i ng  with the fourth approximation i n  terms of the order of e 4- P . 
+ 

J + I Considering P t o  be a quantity of order - (where I i s  a 'zero order' 2 E 

quantity), we will perceive t h i s  dependence i n  the zero approximation. 

Finally, l e t  us note tha t  we must s t i l l  complete one simple tranformation of 

the wave function 

(19) 

fo r  - i - a in the f i e l d  energy a S f  - i - + - which reduces t o  substi tuting 

wave equation, i n  order t o  make possible the expansion of the wave function in  a 

aQ e aQf 

se r i e s  of increasing powers of the s m a l l  parameter. 

Here s are  certain complex numbers which we w i l l  determine l a t e r .  Hence, f 

we w i l l  require t h a t  

in order t o  guarantee the substantiali ty of the exponent. Furthermore, since the & 
Qf 
generali ty of the choice of 

variables are  re la ted through condition (U),  we can put, without l imit ing the 

sf: 
., z f UfSf = 0 

( f )  
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Actually, if any si do not s a t i s fy  these relat ions,  we can a l w a y s  write: 

which, on the  one hand, already satisfy and, thus, introduce new quant i t ies  

(19,> and, on the other hand, do not change the value of the exponent under con- 

s iderat ion because of (11) : 

Sf 

Z "Qf = sfQf 
( f >  ( f >  

Carrying out all the transformations mentioned above, we obtain, finally, the  

wave eqtlation: 

2 ( 20) (Ho + "5 + E H2 + ... - E)+ = 0 

i n  which 

It should be emphasized tha t  the variables 
Qf i n  these equations are related 
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a enter  i n to  the = -i mf through the three re la t ions  (11). 

expression fo r  H only i n  the combinations 

Since the momenta Pf 

and since ident ica l ly  

9* +* P' Z fVfQf - Z fVfQfP{ = 0 
k( f )  ( f )  

+* then t h e  vector 2 fvfQf commutates with H and (U) are  a c t u d l y  compatible 
f )  

with the wave equation (20) .  

Now, l e t  us  apply the usual perturbation theory pract ices  t o  t h i s  equation 

and l e t  us put: 

"hen, we obtain: 

...................................... 
Because of i t s  def ini t ion (U), the operator 

Qf 
solution of the form: 

Ho does not a c t  upon the variables 

of the wave function and, consequently, the first of equations (22) has a 

with the arbi t raoy functions €J( ...Qf...) . 
Putting 

we  see, also, t h a t  V(3) sa t i s f i e s  the equation: 
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Let us assume tha t  the lowest leve l  W = Wo for  t h i s  equation belongs t o  the 

discrete  spectrum and is  separated from the continuous spectrum l eve l  by an energy 

s lo t .  

Let us also assume tha t  t h e  Wo l eve l  f o r  (24) i s  non-degenerate and l e t  us 

denote the corresponding normalized eigenfunction through so($ . Then, desiring 

t o  investigate the energy leve l  sufficiently close t o  the lowest leve l  f o r  the 

system under consideration - part ic les  i n  a quantum f i e l d  - we must put i n  (23): 

The appropriate general solution of the first of equations (22)  i s  
-* 

40 = qo(X)Bo(. . .Qf.. .) 
with the function Bo as yet undefined. 

Now, l e t  us consider the second of equations (22) and l e t  us note that,  

ident i cal l y  : 

Consequently, 

(26) 

But the operator 

( 27) 

i s  a l i nea r  form re la t ive  t o  and, consequently, (26) cannot have a regular 

solution with the exception of the case when the operator (27)  is  ident ica l ly  zero 

Qf,P; 

and when, therefore, it i s  sat isf ied by the arbi t rarg function 8 when El = 0 . 
Hence, l e t  us select  the quantities uf and sf , undefined up till now, so 

0 

t h a t  operator ( 27) w i l l  be annulled. 

Here, equating the coefficients with Qf t o  zero, we find * 
i v  i v  -+ 

i(fX) I V o 6 )  I *d? + vfuf * 
(28) Af J e 
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We cannot, possibly, equate all the coefficients with P i  t o  zero inasmuch as si 

are dread;. re la ted by the three relations (19 ), but t h i s  i s  not required. 1 
Actually, because of ( 2 1 ) , (  28) f o r  t h e  operator (27) t o  vanish, we must guar- 

antee the equality: 

for  a l l  possible P i  . But, according t o  the definit ion,  the P i  satisfy: 
+ c f U f P i  = 0 

( f 

Therefore, (29) W i l l  be s a t i s f i ed  if we se lec t  sf so tha t  

where ?! i s  a certain vectoi which must be defined using (19 ) . 1 
Substituting the value found from (30) 

%- -* 
f 97 

ivf ++ i u  
Sf = - h (If) + -  ( C f )  

V.0 

+ + 
in to  these relat ions,  we obtain an equation re la t ing  C t o  I : 

rhrthermore, substi tuting the value (30) in to  (28), we obtain the following 

"f : expression defining 

(33) 

The formulas (31), (32) ,  (33) which are  found enable sf, uf t o  be determined 

if  qo(I) be known. 

In order t o  determine t h i s  l a t t e r ,  we would have (24)  which now can be writ ten: 

(34) 
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(3.5) 

Let us note t h a t  since it is  required t h a t  W be non-degenerate fo r  the theory 

explained t o  be applicable, we can a l w a y s  consider the real eigenfunction O ( 1 )  . 
0 + 

It is  expedient t o  use i t s  extremal property 
h 

with the  condition 

( 3 7 )  

i n  order t o  determine it i n  f ac t .  

f q2fX)  d'i; = 1 

Before proceeding t o  the  discussion of the properties of t he  first approxim- 

a t ion  obtained, l e t  us continue the analysis of the second of equations (22 )  and 

l e t  us note that ,  on the basis of the above, t h i s  equation can be represented as: 

I 
In order t o  f ind 4, l e t  us consider the eigenfunctions 9 (?) 
equation: 

( n  # 0) of the  n 

which generate with iPo(%) a complete orthonormal 

Then, evidently: 

= O  

system of eigenfunctions. 

where €Il(. . .Qf.. .) is  as ye t  an arbitrary function. Evidently, the  summation 

here also includes the integration over the continuous spectrum. 

Now, l e t  us consider the third of equations (22 )  and l e t  us write it as: 

-* 2 (- $ A? + u(x) - Wo)42 = - H 2 0 0  4) Q + E 2 0 0 - 5 4 1  8 
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The condition tha t  t h i s  equation be solvable is: 

o r  taking ( 3 9 )  i n t o  account 

(F- E2)Qo( ... Qf...) = 0 

Therefore, the  so lvabi l i ty  condition of the second approximation equation leads t o  

an equation determining Q0,E2 . S i m i l a r l y ,  the  so lvabi l i ty  condition of the  th i rd  

approximation equation y i e lds  an equation determining Ql,E3 e tc .  

Now, having explained the  process of successively obtaining the  coeff ic ients  

of our power expansion, l e t  us t u r n  t o  the analysis of the  f i r s t  approximation. 

Since El = 0 , then the energy of t h e  system w i l l  be, according t o  (23) 

(30), i n  t h i s  approximation: 

= wo + - 1 z IUf 12 (.. + --) m2 
2( f )  

EO 

Hence, d i f fe ren t ia t ing  we find: 

On the  other hand, different ia t ing ( 2 h ) ,  we obtain: 

from which 
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Therefore, we have: 

t ha t  i s  

But go is  the system energy in the approximation assumed and, consequently, 

0 where v is t h e  average par t ic le  velocity. Therefore, we see t h a t  the vector 

h C represents t h i s  average velocity to  the accuracy of the factor - 
av 

a 

2 .  & 
Now we can turn t o  the determination of the pa r t i c l e  effective m a s s .  

Let us denote the value of 'P,(h),Wo f o r  C = 0 through Cy (h),Xo . + + -* 

0, 0 9 

We have : 

(43) 

2 a re  rad ia l ly  symmetric functions l A f j  

0,O 

Vf 
For simplicity, l e t  us assume that  

of the quasi-wave vector f and t h a t  CD ( A )  i s  rad ia l ly  symmetric r e l a t ive  t o  

X . Then, expanding E i n  powers of C , we obtain i f  we stop a t  the term pro- 

p o r t i o n d  t o  C' : 

9 9 

+ 
0 

(4.4) 
where 

E o = E  + l C - l u f  hf2 ( 0 ) , 2  c2 
O Y 0  z(f)  Vf 

or 
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2 
av h2f (0) 2 

E = E  + -  2 7 IUf I 
OjO ( f )  3 V f &  

V 

0 

Therefore, the effective mass i n  the f irst  approximation w i l l  be: 

Let us note tha t  (43), f o r  the case ci ted e a r l i e r  of electron motion i n  an 

ionic crystal, i n  the form of an appropriate var ia t ional  principle and (44) f o r  

the energy were obtained f irst  by S. I. Pekar [61 using semiclassical theory i n  

which the electron i s  considered quantum and the f i e ld ,  classical .  

the same semiclassical theory, L. D. Landau and S. I. Pekar [71 first obtained a 

formula f o r  the effective mass, 

Star t ing from 

Here, s t i l l  within the limits of the f irst  approximation, we can f ind a cor- 

rect ion t o  (&) showing the deviation of the dependence of the energy and velocity 

on the quadratic. 

I n  order t o  do th i s ,  it i s  suff ic ient  t o  determine cpo(x),Wo from (34), (35) 

t o  the  accuracy of terms of order C2 inclusively. 

Substituting the expansions in  powers of C: 

i n  these equations, we obtain the l inear  equation determining \E ",B ' sQ 

Wreover, because of the normalization condition, we have: 
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It i s  easy t o  note tha t  i n  the case considered: 

Consequently, i n  the appropriate expansions 

(45) 

+ ... 
Uf 

we can write:  

where pl( [?I) i s  the r e a l  radially symmetric function of the quasi-wave vector. 

Obviously, we a lso  have : 

+ + 
where p0( If I) i s  a r e a l  radially symmetric function of f . 

Therefore, subst i tut ing t h e  expansion (45) i n to  (32), we find: 

from which 

Therefore, we can give an estimate f o r  the l imi t s  of appl icabi l i ty  of the square 

law of the dependence of the energy on the pa r t i c l e  velocity. 

Now, l e t  us turn t o  the second approximation equation, (40). 

Exposing it using (21) we obtain: 



22. 

where 

and 

(49) 

As is seen, the problem of solving (47) leads 

form. L e t  us note t ha t  the sign of this form 

minimum i n  the var ia t ional  problem (36),(37). 
-+ 

Thus, it is  easy t o  show t ha t  i f  o0(A) 

t o  the diagonalization of a quadratic 

is re lated t o  the properties of the 

r e a l l y  rea l izes  the minimum and i f ,  

therefore, the appropriate second variation would be positive, then the quadratic 

form under consideration, n , w i l l  be posit ive.  

vanishes f o r  a var ia t ion of the form ( the  solations of the appropriate Jacobi 

equation) t 

This second var ia t ion a l w q ~ s  

with the arbi t rary constant 63 inasmuch as the integrals  (36),(37) do not vary 

when q('x) is replaced by *(T +To) . 
Now, if the second variation is essent ia l ly  posi t ive for any 69 then it can 

be shown tha t  the quadratic form, , w i l l  be posit ive definite and will becorns 

zero only when, identically: 

... Qf = O... j ... Pi = o... 

~n t h i s  case, the posit ive definiteness of the analyzed quadratic form is diagonal- 

ized by means of the canonical transformation: 
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+ *  
Z $ (f)  b + (-f) bw{ Q f = -  [ 0 w w  7/2 (0) 

+ -% 

(-f) b, - X ( f )  bo 
0 

introducing i n  place of the complex coordinates and the momenta, re la ted  through 

+ 
t o  the usual quantum Bose-amplitudes bw, b, . 

In  t h i s  approximation, 

determined through the equations: 

fw(f),  Xu( f )  represent a system of oleigenfunctions * I 

where 

2 $ (g) 
V Q @  

2 ( f )  = x ( f )  + Vf z 
(g) g 0 0 

and the orthonormalisation conditions i n  accordance with it: 
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(54) 

- 
The corresponding eigenvdues 

Carrying out the canonical transformation in (47), we obtain: 

are  a l l  pos i t ive  i n  the case considered, 

; n w = $ b  0 0  

which has an obvious solution. 

Therefore, the second approximation energy of the system w i l l  be: 

and, in par t icular ,  f o r  our energy level:  

On the other hand, the energy of  

when there are no pa r t i c l e s  equals: 

1 

a pure f i e l d  a t  absolute zero temperature 

2 e -  I , Z h % = F  L v k  

(k) (k)  

Consequently, we must take as the energy of par t ic les  i n  a f i e l d  a t  absolute zero: 

Expanding t h i s  expression i n  a power s e r i e s  i n  the velocity 

we obtain a correction of order 

the f i e l d  and t o  the effect ive mass. 

c 2  t o  Eo , the  energy binding the pa r t i c l e s  t o  
P 

In the general case, expanding (55)  i n  powers of vav (with the exception of 

the energy of the pure f i e ld ) ,  i t  is easy t o  note t h a t  the corresponding corrections 

w i l l  depend on the temperature, 
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In f ac t ,  completing the computation is  

~ ~~ ~~ ~~ 

made more d i f f i c u l t  by the complexity 

of determining the eigenvalues from the system (51). 

However, i n  substance, it is  not necessary for us t o  be able t o  evaluate the 

individual ga . 
It is  suff ic ient  

Since these sums 

di rec t ly  according t o  

to  have a method of determining a sum of the type: 

- 
are  symmetric functions of 

the given coefficients of (Q) can be developed without 

&a , a method t o  calculate them 

- 
relying on finding the individual . 

An explanation of such a method is  the subject of the next paper. 

In  conclusion, l e t  us note that the development of the above first approxim- 

at ion theory i s  not altered if  we take, not the minimum i n  (24), but any other 

discrete  spectrum (as long as it i s  not degenerate). 

Therefore, we investigated the possible excited s t a t e s  of p a r t i d e s  in a f i e l d ,  

The transformation t o  the second approximation shows t h a t  these s t a t e s  are 

quasi-stationary and have f i n i t e  l i f e  time. 

The case of degenerate s t a t e s  requires special analysis and certain improve- 

ment of the subst i tut ion of variables (10). 
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m. Theodore D. 3chd tZ  of MIThas cal led my a t ten t ion  t o  certain inadequacies 
and inaccuracies in my t rans la t ion  of the Bogoliubov paper which a re  due, equally, 

t o  my misinterpretation and t o  the poor qua l i ty  of Russian pr int ing.  

F i r s t ,  since the European notation i s  used, the following corrections should 

be made throughout: 
- 9  7 -  

(f  r )  -+ ( f e r )  

(fd -+ ( f , d  

[q -3 (Z3 

A l i s t  of other corrections follows: 
Page 
1 
6 
8 

9 
10 

10 
10 

12 

15 
15 
16 

16 
21 
22 

Line 
13 from bottom 

2 from bottom 

12 from bottom 

13 from bottom 
10 from top 

3 from bottom 
6 from bottom 

4 from bottom 

3 from top 
5 from top 

1 from top 

4 from bottom 
3 from bottom 

2 from bottom 

nonperiodic should read per iodic  

observations should read observables 
a l l  the var ia t ion .. . should read: the whole var ia t ion  

substant ia l i ty  should read r e a l i t y  
should read (15) 
clear should read clarify 
last t e r m  i n  (16) should read 

t rans la tes  on Yj . 

substantiality should read r e a l i t y  

s l o t  should read gap 

qo(X) should read cP,(X) 

with P; should read of Ph 

Paragraph should read: 

Exposing should read expanding o r  developing 

Paragraph should start: In  t h i s  case of posi t ive 

The formulas (31) (32), (33) found 

definiteness, the  analyzed quadratic form e tc .  


